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The Ising square lattice with nearest-neighbor exchange J > 0 and a free surface 
at which a boundary magnetic field H1 acts has a second-order wetting 
transition. We study the surface excess magnetization and the susceptibility of 
L x M lattices by Monte Carlo simulation and probe the critical behavior of this 
wetting transition, applying finite-size scaling methods. For the cases studied, 
the results are not consistent with the presumably exactly known values of the 
critical exponents, because the asymptotic critical region has not yet been 
reached. Implication of our results for critical wetting in three dimensions and 
for the application of the present model to adsorbed wetting layers at surface 
steps are briefly discussed. 

KEY WORDS: Critical wetting; Ising model; Monte Carlo simulations; 
finite-size scaling. 

1. I N T R O D U C T I O N  

In a system below its critical point where several phases can coexist 
the forces exerted by a wall may favor a phase different from the phase 
occurring in the bulk, and this fact may lead to the formation of a wetting 
layer at the wall, separated by an interface from the bulk phase. For 
example, for an Ising ferromagnet with positive magnetization in the bulk 
in zero bulk field a negative boundary field H 1 at the wall may stabilize a 
domain with oppositely oriented magnetization at the surface. 

While in the "nonwet" state of the wall the thickness of such a wetting 
layer is microscopically small (i.e., a few lattice spacings in the example of 
the Ising magnet), changing parameters such as H1 or the temperature T 
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of the system, one may encounter a wetting transition, where the thickness 
of the wetting layer diverges, and it stays infinite throughout the wet region 
(i.e., the interface between the coexisting phases is no longer "bound" to the 
wall). Such interface unbinding transitions have attracted much interest 
recently. (1-5/'3 While mean-field theory adequately describes them for 
systems with long-range forces, (21 critical wetting in three-dimensional 
systems with short-range forces still is a controversial issue. (6-17) Three 
space dimensions is the marginal case for the validity of mean-field theory 
of critical wetting; there is a logarithmic divergence of the thickness of the 
wetting layer when the transition is approached (associate exponent 
v •  (6-8/ While the critical exponent is vr j=l  in mean-field theory, 
renormalization group theory predicts (6' 8, 10~ very different (nonuniversal) 
values for vii. Monte Carlo simulations of critical wetting in the three- 
dimensional Ising model (9' 13, ~5) seem to differ from these renormalization 
group predictions, while simulations completely neglecting bulk fluctua- 
tions treating the interface in a solid-on-solid (SOS)-like approximation (14~ 
agree better with the renormalization group results. It is not clear as yet, 
however, where the asymptotic critical region for the various models 
begins(11, 14, 15, 17) and whether there is any fundamental difference between 
wetting in Ising models and in SOS models. 

In the present paper, we consider critical wetting for the two-dimen- 
sional Ising model, where much more information is available from exact 
results, and hence a more clear-cut interpretation of Monte Carlo studies 
should be possible. In particular, the critical boundary field HIe(T) where 
critical wetting occurs is known from Abraham's exact solution (18' ~9) as 

exp( 2J/kB T)[cosh(2J/kB T) - cosh( 2Hlc/kB T)] = sinh( 2J/kB T) (1) 

and in addition some exact results on magnetization profiles near the wall 
in zero bulk field (2~ and on the correlation lengths r ~-• are 
available,(21, 22~ which imply for the associated exponents v• = 1 and vii = 2. 
The same exponents occur when one uses the solid-on-solid approximation 
for studying wetting in two-dimensional systems, where the only degrees of 
freedom characterize the random-walk describing the position of the one- 
dimensional interface. (23-26/Also, certain exact results on finite-size scaling 
are known for this model. (27' 28) 

The exact results do not include the behavior of this wetting transition 
in the Ising model as a function of the bulk field, however. Although one 
has good reasons to believe that the critical behavior asymptotically is the 
same as in the SOS model limit, the question remains on the width of the 
critical region and of establishing the behavior of the model over the full 

3 See refs. 1-3 for general reviews on wetting. 
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parameter range. In this respect, the present Monte Carlo simula- 
t ions-which  are the first Monte Carlo studies of this model--make a con- 
tribution. This paper also considers the question of the parameter regions 
in which this exactly known critical behavior can be extracted from Monte 
Carlo simulations. Since the latter necessarily consider an L x M geometry 
with finite linear dimensions M (parallel to the wall) and L (perpendicular 
to the wall), a finite-size scaling approach is formulated in Section 2 (- 
previous work has considered oo x L geometry (27) or M x oo geometry (28) 
only). Section 3 describes our numerical results and their interpretation, 
while Section 4 summarizes our conclusions and discusses possible applica- 
tions of our results. 

2. P H E N O M E N O L O G I C A L  F IN ITE-S IZE S C A L I N G  T H E O R Y  

For a macroscopically thick system (L ~ ~ ) ,  the total free energy J~ 
can be split into bulk and surface free energies ~ ,  ~ as follows (see ref. 29 
for an introductory review), H being the bulk magnetic field: 

1 
~ ( T , H ,  H 1 , L , M ) = ~ ( T , H , M ) + z ~ s ( T , H , H ~ , M  ) (2) 

In this limit it is only the surface free energy ~ which becomes singular at 
the wetting transition. Therefore, we focus on this quantity and its 
derivatives in the finite-size scaling approach. We thus use the ansatz (2) 
also for arbitrary finite L, in which ease ~ still may also depend on L 
explicitly. Denoting the distance from the critical wetting line Hie(T) in the 
T-H1 plane by t, we can write the singular part of ~,~ as (see also ref. 30) 

~-~sing) = tv,r~{t-(~l, +,~l)H, Lt~ ,  MtV,l } (3) 

Here ~ is a scaling function, and limits L ~ oo, M ~ oo, H ~ 0, t ~ 0 are 
implied. Of course, the motivation for the last two arguments of ~ is that 
M "scales" with ~ll, and L "scales" with ~• (~Jl ~ t-vii, C J- ~ t -v ' )  �9 Since the 
surface is a one-dimensional object in "parallel direction," hyperscaling 
implies that ~sing)(T, H = 0 ,  H 1 ) ~ t  vl~, for L ~  0% M--* oo. The scaling 
power of H in Eq. (3) then is recognized, noting that the thickness of the 
wetting layer simply is proportional to the surface excess magnetization 
defined as (29) 

m, = - ( ~ / ~ H ) r , ~  = t ~'rh,{t-(~ll + ~')H, L F  ~, m t  vii } (4) 

and hence m~ ~ ~ .  ~ t-~' ,  as required, and r~, is another scaling function. 
The surface susceptibility becomes 

)G = (~mJ~H)T,H~ = t-~'l- 2~• t-(~l' + ~• Lt  ~ } (5) 
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with ~ a third scaling function. Since the total susceptibility of the system 
can be written, in analogy to Eq. (2), as 

1 1 
Z = Z b + ~ Z ~  ~ (6) t ~ o L  Zs 

where the last approximation is justified by the fact that Zb is a nonsingutar 
finite constant at the wetting transition, we conclude for the singular part 
of Z 

Zsing=t (v~+~,l(Lt~) 1 ~, ~,t-(~H+~)H LtVl, MtV~} 

= t-(vll+v• Lt v• Mt vii } (7) 

This result shows that the total susceptibility of the system contains infor- 
mation on critical exponents of wetting. Since from sampling fluctuations 
of the total magnetization Z can be calculated straightforwardly and 
precisely, we shall make use of Eq. (7) extensively. Thus, we exploit a few 
consequences of Eq. (7), starting from the fact that we eliminate the scaling 
powers of t in favor of scaling powers of L keeping only an Lt v~ term, 

X sing = H -  I ~ { L 1  + vil/V• Lt ~, M/L wv+ } (8) 

which involves a redefined scaling function. Equation (8) implies a sensible 
limit for t = 0, H ~  0: then Z ~"g should be finite, and considering the limit 
L ~ ~ at fixed ratio M/L ~li/~ = const and at fixed H, we conclude 

Z sing = H -  I~.(M/LVL'/~) (9) 

Conversely, taking for t = 0  in Eq. (8) the limit H = 0  when both L and 
M/L ~/~• are fixed, again a finite maximum value of Z must be reached, 
since the system then is finite in all its extensions, and therefore Z cannot 
be divergent. Thus we conclude for the maximum value of Z (reached for 
H = 0 ,  t = 0 )  

X max ~ t 1 + ~ll/v• ~ll/~) (10) 

We now specify to the case where on the left boundary of the L • M film 
the boundary field is chosen as -IH~[ and at the right boundary it is 
chosen as +IH~I. Irrespective of the sign of t, we then have a single inter- 
face in the system between a domain with positive magnetization and a 
domain with negative magnetization. However, in the nonwet state this 
interface can be bound to either the left or to the right boundary. Both 
situations are completely equivalent. For large L (at fixed M) the 
magnetization of the total system then basically fluctuates between the 
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positive and the negative value of the bulk spontaneous magnetization. 
This macroscopic fluctuation, just as at a first-order transition, (3~) implies 
that )~max must be proport ional  to the "volume" L M  of the system. This 
case is correctly reproduced by requesting that for fixed M and L --, oe the 
scaling function 2'(z) must behave as 2 ' (z-- '  0 ) ~  z. On the other hand, for 
fixed L in the limit M--* 0% the quasi-one-dimensional strip must behave 
a s  

z~L~l i  (11) 

since writing Z as a sum over correlations, Z = S o  <SiSj) ,  we obtain, after 
coarse graining over a length L and converting the sum to an integral, (3~ 
Z ~ L ~ exp ( - z /~ l t )dz  = L~tt, making use of the fact that in one-dimen- 
sional systems the decay of correlations is a simple exponentional func- 
tion. (3~ Since for fixed L the value of Zlt at t = 0 saturates at (3~ ~tt ~ LV~/v~, 
Eq. (11) implies Z ~ L1 + ~l/~• i.e., the scaling function ~'(z ~ oo) tends to a 
finite nonzero constant. 

Similar arguments can be worked out to discuss ms further. An alter- 
native form to Eq. (4) is [cf. Eq. (8)] 

m~ = Lm~ { L 1 + v!l/~• H, LF  • M/L~I,/~• } (12) 

For  t = 0 and M / L  ~/~• = const we conclude in the limit L ~ ~ that 

rn~ ~ H -  ~/(1 +~lL/~•177 (13) 

On the other hand, for t =0 ,  H ~ 0 ,  and keeping both L and M / L  ~r 
finite, we again conclude that the divergence of m, is cut off by some finite 
maximum value 

m max = Lrh'~(M/L v''/~• (14) 

Similar scaling relations could obviously be worked out for the other 
response functions (29) ml = - ( t ~ J ~ s / ~ H 1 ) r , n ,  Zl = ( S m l / c ~ g ) r , n , ,  and )~11 = 

(OmI/3H1)T,~I. This obvious extension is left to the reader. 

3. M O N T E  CARLO RESULTS A N D  THEIR A N A L Y S I S  

Simulations have been carried out at the multitransputer Meiko Com- 
puting Surface at the Institute of Physics at the University of Mainz. 4 For  
the Ising Hamiltonian in an L x M geometry with two free boundaries of 

4 See refs. 32-35 for a description of this facility and for previous applications to other models. 
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length M and periodic boundary conditions in the remaining direction 
(Fig. 1), we have 

 e=-j 2 S S -HE S,-H  Z Z (lS) 
( i , j )  i i e l e f t  i ~  right 

boundary boundary 

Unlike related work in three dimensions, (9" ~3, ~5) where H L = H~ is chosen, 
we use the boundary condition HL = --H~. While for HL = H~ and suf- 
ficiently negative, two interfaces will exist for H >  0, and for the choice 
HL = - -H~,  a single interface is always expected in the system (Fig. 1). For 
the case H L = H~ the situation with two interfaces is stable only for suf- 
ficiently large bulk field ( H >  H * ~  l / L ) ,  (35' 36) while for H <  H* the stable 
state has a uniformly negative magnetization. While in three dimen- 
sions(9, 13,15) the situation in Fig. la with two interfaces is sufficiently 
metastable to allow meaningful computer simulations for 0 < H <  H* as 
well, since the interfacial width increases with M only logarithmically, this 
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Fig. 1. Simulation geometry indicating schematically the effect of different boundary condi- 
tions. Two free boundaries of length M (solid straight lines) and two periodic boundaries of 
length L (broken straight lines) are used. (a) H1 = HL < 0; (b)-(d) H1 = - H L  < 0~ Regions of 
positive local (coarse-grained) magnetization are shown as open areas, regions of negative 
local (coarse-grained) magnetization are shaded, and the interfaces are indicated by solid 
lines. Cases (b) and (c) refer to the "nonwet" state for bulk field H = 0 ,  where a degeneracy 
occurs with the single interface being "bound" either to the left or to the right boundary, while 
for the "wet" state [case (d)] the most probable position of the (unbound !) interface is in the 
center of the strip. By coarse graining we mean an averaging of the local magnetization on 
the scale of the bulk correlation length to eliminate small clusters of overturned spins, over- 
hangs of the interface, etc. 
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is not so in two dimensions, where the interfacial width over the length 
scale M is expected to scale as  M1/2, (5) and its local position also relaxes 
much more rapidly than in three dimensions. With the choice HL = --H~, 
and I Hll sufficiently large, a state with a single interface occurs in ther- 
modynamic equilibrium for arbitrarily small bulk fields. For H = 0, there is 
of course a degeneracy between the cases in Figs. lb and lc. No sign of the 
bulk magnetization is preferred. While for large L in the nonwet state 
the interface is either close to the right (Fig. lc) or to the left (Fig. lb) 
boundary, and hence the average magnetization of the strip is either close 
to the positive or the negative value of the bulk spontaneous magnetiza- 
tion, the wet state is characterized by an interface position fluctuating 
around the center of the film, and hence the most probable values of the 
average magnetization of the strip are close to zero. 

Note that in this discussion we assume that M is much less than a 
characteristic length ~37) ~a,-,.,exp(2cyintL/kr~T). If M would exceed this 
length, for H =  0 the strip would in the nonwet state be decomposed into 
a succession of domains of positive and negative magnetization, ~d being 
the average distance between domain walls running perpendicular to the 
strip, unlike the situations shown in Fig. 1. Near the wetting transition one 
could also imagine a situation where locally in the strip one crosses over 
from the situation such as in Fig. lb to the case of Fig. lc with the inter- 
face making a (seldom) large excursion similar to Fig. ld. Therefore our 
simulations cannot be directly interpreted with the theory of Privman and 
Svrakic, (27) where M ~  ~ is considered throughout. Of course, the limit 
M ~ ~ is more conveniently studied by transfer matrix calculations than 
by Monte Carlo for d =  2. 

Figure 2 shows snapshots of the actual typical system configurations 
as observed in our simulations. Extrapolating the positions of the suscep- 
tibility maxima of the "susceptibility" Z' 

(16) 

vs. l/L, a rough estimation of the wetting critical line H1c has already been 
performed (Fig. 3). (34) There only small values of L (L ~< 24) were used. 
Within the rather modest accuracy of this study, the exact result of 
Abraham (18) is compatible with the Monte Carlo data; of course, this is a 
consistency check only. New insight, however, is gained by checking some 
of the finite-size scaling relations of Section 2, as done in Figs. 4-6. Here 
also sometimes data on the standard susceptibility [defined as Eq. (16), 
but without the absolute value sign] kB TX are included. 

Figure 4 checks Eq. (10), noting vjl=2, v •  Zm~x/ZM~ 
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Fig. 2. Snapshots of the spin configuration for L = 8 0 ,  M = 8 0 ,  H1/J= 0.5, and (a) 
H/J=IO 6, T/Tc=0.76, (b) H/J=IO 5, T/Tc=0.863 ' and (c) H/J=IO 4, T/Tc=0.9 Spins 
Si = + 1 are indicated by black stars (thus, unlike Fig. 1, no coarse graining is performed). 
Time of the snapshots  is t = 60,000 Monte Carlo steps (MCS) per spin, after the system is 
started from a state with S~ = - 1 for the x coordinate of the site i being less than or equal 
to L/2 and S i=  + 1 for the x coordinate of the site i exceeding L/2. 
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Fig. 3. Wetting phase diagram of the two-dimensional Ising ferromagnet in the plane of 
variables H i =  - H j J  and T/Tc, where Tc is the bulk critical temperature, kBT/J'~2.269. 
( - - )  The exact result cf Abraham [Eq. (1)]; ( + )  results from analyzing the variation of Z' 
[Eq. (16)] with H 1 at fixed T, (A)  from varying T at fixed Ha, ( 0 )  from analyzing the 
probability distribution of the total strip magnetization. ~34/ 
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Fig. 4. Log--log plot of ku T)~/LM and kB Tz ' /LM vs. M/L 2 for strips of fixed width L = 8 
and various M in the range 128 ~< M ~< 1048, and TIT c = (O)  0.863, ( + ) 0.913, and ( A ) 0.963. 
All data are for H '  1 = 0.5 and H = 0. Here TIT c = 0.863 is exactly at the wetting transition, and 
the two other temperatures are in the wet region of the phase diagram, Fig. 3. 
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L 2 / M ~ ' ( M / L 2 )  ~ ( M / L  z) ~ for M / L  2 large enough such that 2' can be 
approximated by its limiting value, 2'(oo). In the wet region, the same 
variation is expected as for the wetting transition itself, and this is clearly 
borne out. These data were obtained from averaging over 6.75 x 105 Monte 
Carlo steps (MCS) per spin, discarding the initial 0.2x 105 MCS/spin, 
using an array of 23 transputer processors working in parallel. 

In the regime where the strip is fairly thick, i.e., where the scaling 
variable M / L  ~r = M / L  2 in Eq. (8) is small enough, we find the suscep- 
tibility to be nearly independent of this scaling variable, at least within the 
statistical scatter (Fig. 5). In Fig. 5 we have plotted for t = 0 (T/Tc  = 0.863 
at HI  =0.5) the normalized susceptibility k B T x ' / L  3, which according to 
Eq. (8) should then be equal to (HL 3) 1. This is borne out by the data of 
Fig. 5. 

Figure 6 tests the temperature dependence of g' as predicted by Eqs. 
(5) and (6). For large enough L and M off the wetting transition we simply 
should have g',-~ z J L  ~ t -vii -2V' /L ~ t -4 /L .  Our numerical data are consis- 
tent with this prediction in the decade 0.03 < t < 0.3, while closer to the 
wetting transition, finite-size effects are clearly present, and there is also 
strong statistical scatter. This strong scatter reflects already the slow 
motions of the interface, which now is nearly completely "depinned" from 
the boundary. At and above the wetting transition, the free interface slowly 
diffuses back and forth across the strip (on a time scale of the order of 10 4 
MCS/spin for L = M =  80; see Fig. 7), and hence for t~<0 (in the wet 
regime) it is very hard to take meaningful data on Z' and other thermo- 
dynamic quantities. 

The magnetization profiles (Fig. 8) can be used to extract both the 
surface layer magnetization ml (Fig. 9a) and the surface excess magnetiza- 
tion ms (Fig. 9b), since an alternative definition instead of Eq. (4) is 
expressed in terms of the local magnetization mt in the / th  layer (29) 

L/2 

m s =  ~ (rob--m,) ,  L--+ oo (17) 
l = l  

noting that for large /, mt must approach the bulk magnetization in the 
film. For the surface layer magnetization, we predict for T =  Tw a critical 
behavior 

z~m I ~-- m l ( H )  - ml(O) ,'~ H 1 - (~• + 1)/(v~ + vO = HI~3 (18) 

since from Eq. (4) we find for the layer susceptibility (29) Z~-- 
-- (6qz,_~s/~H c~H1 ) : ~ms/(~H 1 

X~ \ ~t / H  = t - ~  ~2~(t (v~+WH), L ~ o o ,  M ~ o o  (19) 
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various choices of L and M as indicated in the figure. The magnetic field is measured in units 
of J throughout. Straight line indicates a slope of minus one. Data are based on averages from 
105 to 7.5 • 105 MCS/site, with 0.2 x 105 initial steps being discarded. 
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critical temperature for H '  1 = 0.5 [H~c (Tw) = 0.5], on a log-log plot. 
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Fig. 7. Snapshots of the spin configuration for L=80 ,  M = 8 0 ,  H'1=0.5, H/J= 104 , 
T/Tc=0.9, and different times: (a) t =  5 x 104 MCS, (b) t =  7 x 104 MCS, and (c) t =  8 • 104 
MCS. Spins Si = + 1 are shown by black stars; spins Si = - 1 are not shown. 
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Fig. 8. Magne t i za t i on  profile m r vs. layer  index l across  the strip, for L = M = 130, H '  1 = 0.5, 

T =  T w = O . 8 6 3 T  c, and  var ious  magne t ic  fields as indica ted  in the figure. These results were 

based on averages  over  6.75 x 105 MCS/sp in ,  wi th  the first 2 x 104 being discarded.  

where we have interpreted the distance t from the wetting transition as 
H 1 --Hxc for T=const .  For t = 0 ,  H:~0,  HI must be finite, which in fact is 
only possible if 

and therefore 

ZI (z) ~ z (~• + 1)/(~• + vt0 

Zl(t = O) ~ H (~• + 1)/(v• + vO 

Since the alternative definition for Z1 is(29) .~1 = (Oml/OH)HI,T, Eq. (18) 
H follows from integration, A m  I = fo X1 dH. 

From the fact that for small H the slowness of the fluctuations of the 
interface which then is practically "depinned" from the boundary (Fig. 7) 
would require much larger computational effort than was available (runs of 
up to 675,000 MCS/spin were performed for a system size 130 x 130, for 
instance), data for H / J <  10 3 had to be discarded. On the other hand, for 
H/J>O.O1, finite-size effects were found to be completely negligible 
(Fig. 9b). Thus, we have not attempted to test Eq. (14), but rather checked 
the simple power law [cf. Eq. (13)] 

m s ~ H  l /( l+vll /v•  1/3 L--*oo, M--*oo, H--*0 (20) 

Now the surprising feature of our data is that for 0.001 ~< H/J<~O.1, where 
we feel that statistically significant data are available, Eq. (18) seems to be 
compatible with the Monte Carlo results (Fig. 9a), while Eq. (20) is not 
(Fig. 9b). For H/J<<.O.O1 the "effective exponent" in Fig. 9b is close to - �89 
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instead of - �89  but the smooth curvature extending over a wide region in 
this plot indicated that the asymptotic regime where Eq. (20) holds has not 
been reached. 

To elucidate this problem further, we have also taken data in the 
regime of "complete wetting" (Fig. 10), (38) where H'~ > H'~c. The behavior 
of ms is very similar; over the regime 0.001 ~< H/J<<. 0.1, the log m s vs. log H 
plot is curved, and for the smallest fields the onset of finite-size effects is 
masked by strong statistical scatter. However, the variation of Am t with H 
for small H now is simply analytic, reflecting a finite value of Z l for the wet 
regime, as expected from the analogous results in d =  3 dimensions. (~3" ts) 
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Fig. 9. Log-log plot of (a) Aml and (b) m, vs. magnetic Acld, for H]=O.5 and 
T =  Tw = 0.863T~. In case (b) also addi t ional  smal ler  sizes L x M are included as indicated in 
the figure. 



Critical Wetting in Square ising Model 175 

01[ 

O0'I 

.xz-o 

io  -3 i0 -2 i0  -~ 

H I J  

(a) 

Fig.  10. 

10 

I 

0~ 

\% 
\ 

syrnbot L M 

x 130 
130 
130 

10 -3 10 -~ I 0  "t 

H / J  

%, 

(b) 

Same as Fig. 9, but for HI=0,8, T=0.863T,.. Linear dimensions for case (a) are 
L = M = 8 0 .  

4. D I S C U S S I O N  

In this paper a Monte Carlo study of critical and complete wetting in 
two dimensions has been presented, and the results have been interpreted 
in terms of various theories. While for bulk field H = 0 the model has been 
solved exactly by Abraham, (18 22) and thus the location of the critical wet- 
ting line is exactly known (Fig. 3), the behavior for nonzero field can only 
be inferred from scaling assumptions. Thus, the purpose of our Monte 
Carlo study has been twofold. Comparison with exactly known critical 
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exponents gives information on the width of the critical region for the 
second-order wetting transition in this model. In the analogous three- 
dimensional Ising model, this is a debated issue. Furthermore, one can 
check that the limitations of every Monte Carlo simulation, namely finite- 
averaging time effects and finite-size effects, are well under control in this 
model. This fact is rather nontrivial, since the interracial fluctuations are 
very slow (see Fig. 7 for an illustration), and the finite-size effects are quite 
nontrivial, since the correlation lengths ~ll, ~ diverge with rather different 
(and large!) exponents, namely vii = 2, v• = 1. Thus, one expects that for 
t = 10 -1 the correlation length ~lJ may already be of the order of 102, which 
implies that the computational task is rather demanding. In addition, the 
finite-size scaling analysis is rather tricky, as should be obvious from Sec- 
tion 2, where the appropriate background theory has been worked out. In 
our case, the analysis is of course somewhat facilitated by the fact that the 
location of the critical wetting transition was used throughout--anisotropic 
models where neither T c nor the critical exponents are understood, as in 
the driven Kawasaki model, and its variants are still much less under con- 
trol when one applies analogous methods. (3~ Therefore, the present 
model is a useful testing ground for the application of Monte Carlo techni- 
ques to models with anisotropic critical behavior. Finally, the predictions 
of the scaling theory for describing the effects of the bulk field on the 
wetting transition and on the wet phase can be tested. 

Given these expectations, not all of our results are clear-cut. While the 
thermal variation of ~4' seems to be consistent with theory already very far 
from the transition (0.03 < t < 0.3), the predicted variation of the surface 
excess magnetization with bulk magnetic field, Eq. (20), has not been 
verified for the accessible regime of fields, H/J> 10 -3. In this regime, ms is 
of the order of 10 (Fig. 9b) or larger (Fig. 10b), and thus the reason for the 
narrowness of the critical region is not understood. On the other hand, the 
relation Am1 ~ H  1/3 has been verified (Fig. 9a). The situation is exactly 
opposite to the three-dimensional case, (13' 15) where the theoretical relation 
m s vs. H(m, ~ In H in this case) is nicely established, while the Am1 vs. H 
relation is not. It is hoped that our observations will stimulate additional 
theoretical activity to explain these findings. 

While some of the predictions from finite-size scaling for the surface 
susceptibility could be verified (see Figs. 4 and 5), a larger part of these 
predictions remains untested, because statistically significant Monte Carlo 
data could not yet be generated with affordable effort. Part of our calcula- 
tions have been performed on the parallel computer described in ref. 32, 
where four transputers work in parallel, while the larger fraction has been 
generated on a MEIKO Computing Surface containing 80 transputers, out 
of which a domain of 23 transputers was used for the present calculations. 
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In the latter case a performance of 10 7 spin flip trials per second was 
reached. Since linear dimensions L, M of the order of 10 2 certainly are 
required to ensure that the asymptotic regime of validity for finite-size 
scaling is reached, and then the relaxation time for interracial fluctuations 
is at least of the order of 10 4 in the wet regime, a substantial amount  of 
C P U  time is clearly required to proceed further. 

Finally, we again draw attention to the fact that the present model 
should be relevant to adsorption at stepped surfaces in the submonolayer 
coverage range. (33-3s) The boundary field H 1 then accounts for "missing 
neighbors" of adatom absorbed right next to a step, and possibly to a 
change in its binding energy. The bulk magnetic field translates into the 
chemical potential difference between high-density and low-density phases 
adsorbed at a perfect flat substrate surface of infinite extent. The 
magnetization profile would then correspond to the coverage profile in the 
direction perpendicular to the step. Again in this case a finite distance L 
between steps (and another finite distance M over which the "terrace" 
between steps in the direction parallel to the steps is ideal) is physically 
more plausible than the perfectly infinite system L ~  ~ ,  M ~  0% and 
hence the phenomenological theory of Section 2 finds another application 
there. 

A C K N  O W L E D G  M ENTS 

One of us (E.V.A) thanks the Alexander von Humboldt  foundation for 
support  through a research fellowship and the Consejo Nacional de 
Investigaciones Cientificas y Tecnicas de la Republica Argentina for 
support. This work also was supported by the BAYER AG, Leverkusen, 
and the Bundesministerium ffir Forschung und Technologic (BMFT)  
under grant 03M4028.4. 

R E F E R E N C E S  

1. D. E. Sullivan and M. M. Telo da Gama, in Fluid Interfacial Phenomena, C. A. Croxton, 
ed. (Wiley, New York 1986). 

2. S. Dietrich, in Phase Transitions and Critical Phenomena, Vol, XII, C. Domb and 
J. L. Lebowitz, eds. (Academic, New York, 1988), p. 1. 

3. E. H. Hauge, in Fundamental Problems in Statistical Physics VI, E. G. D. Cohen (North- 
Holland, Amsterdam, 1985), p. 65. 

4. W. Selke, D. A. Huse, and D. M. Kroll, J. Phys. A 17:3019 (1984). 
5. P. G. de Gennes, Rev. Mod. Phys. 55:825 (1985); M. E. Fisher, J. Chem. Soc. Faraday 

Trans. 2 82:1569 (1986); J. Stat. Phys. 34:667 (1984). 
6. E. Br~zin, B. I. Halperin, and R. K. P. Zia, Phys. Rev. Lett. 50:1387 (1983). 
7. R. Lipowsky, D. M. KrolI, and R. K. P. Zia, Phys. Rev. B 27:4499 (1983). 



178 Albano et  aL 

8. D. S. Fisher and D. A. Huse, Phys. Rev. B 32:247 (1985). 
9. K. Binder, D. P. Landau, and D. M. Kroll, Phys. Rev. Lett. 56:2276 (1986). 

10. R. Lipowsky and M. E. Fisher, Phys. Rev. B 36:2126 (1987); Phys. Rev. Lett. 57:2411 
(1986). 

11. E. Br6zin and T. Halpin-Healey, Phys. Rev. Lett. 58:1220 (1987). 
12. E. Br6zin and T. Halpin-Healey, J. Phys. (Paris) 48:757 (1987). 
13. K. Binder and D. P. Landau, Phys. Rev. B 37:1745 (1988). 
14. D. M. Kroll, J. Appl. Phys. 61:3595 (1988); G. Gompper and D. M. Kroll, Phys. Rev. B 

37:529 (1988). 
15. K. Binder, D. P. Landau, and S. Wansleben, Phys. Rev. B 40:697t (1989). 
16, A. D. Parry and R. Evans, Phys. Rev. B 39:12336 (1989). 
17. T. Halpin-Healey, Phys. Rev. B 40 (1989). 
18, D. B, Abraham, Phys. Rev. Lett. 44:1165 (1980). 
19. D. B. Abraham, in Phase Transitions and Critical Phenomena, Vol, X, C. Domb and 

J. L. Lebowitz, eds. (Academic, New York, 1987), p. 1. 
20. D. B. Abraham and D. A. Huse, Phys. Rev. B 38:7!69 (1988). 
21. D. B. Abraham and E. R. Smith, J. Stat. Phys. 43:621 (1986). 
22. D. B. Abraham, J. Phys. A 21:1741 (1988). 
23. S. T. Chui and J. D. Weeks, Phys. Rev. B 23:2438 (1981). 
24. T. W. Burkhardt, J. Phys. A 14:L63 (1981). 
25. D. M. Kroll, Z. Phys. B 41:345 (1981). 
26. J. M. J. van Leeuwen and H. J. Hilhorst, Physica A 107:319 (1981). 
27. V. Privman and N. M. ~vrakic, Phys. Rev. B 37:3713 (1988). 
28. D. M. KroU and G. Gompper, Phys. Rev. B 39:433 (1989). 
29. K. Binder, in Phase Transitions and Critical Phenomena, Vol. VIII, C. Domb and 

J. L. Lebowitz, eds. (Academic, New York, 1983), p. 1. 
30. K. Binder and J. S. Wang, J. Stat. Phys. 55:87 (1989). 
31. K. Binder and D, P. Landau, Phys. Rev. B 30:1477 (1984). 
32. D. W. Heermann and R. C. Desai, Computer Phys. Commun. 50:536 (1988); R. C. Desai, 

D. W. Heermann, and K. Binder, J. Stat. Phys. 53:795 (1988). 
33. E. V. Albano, K..Binder, D. W. Heermann, and W. Paul, Z. Phys. B 77:445 (1989). 
34. E. V. Albano, K. Binder, D. W. Heermann, and W. Paul, Surf Sci. 223:151 (1989). 
35. E. V. Albano, K. Binder, D. W. Heermann, and W. Paul, J. Chem. Phys. 91:3700 (1989). 
36. M. E. Fisher and H. Nakanishi, J. Chem. Phys. 75:5857 (1981); H. Nakanishi and 

M. E. Fisher, J. Chem. Phys. 78:3279 (1983). 
37. M. E. Fisher, J. Phys. Soc. Japan Suppl. 26:87 (1969); see also G. G. Cabrera, R. Jullien, 

E. Br6zin, and J. Zinn-Justin, J. Phys. (Paris) 47:1305 (1986). 
38. R. Lipowsky, Phys. Rev. B 32:173 (1985). 
39. J. S. Wang, K. Binder, and J. L. Lebowitz, J. Stat. Phys. 56:783 (1989). 


